The strength of Ramsey Theorem for coloring relatively large sets
نویسندگان
چکیده
We characterize the computational content and the proof-theoretic strength of a Ramseytype theorem for bi-colorings of so-called exactly large sets. An exactly large set is a set X ⊂ N such that card(X) = min(X) + 1. The theorem we analyze is as follows. For every infinite subset M of N, for every coloring C of the exactly large subsets of M in two colors, there exists and infinite subset L of M such that C is constant on all exactly large subsets of L. This theorem is essentially due to Pudlàk and Rödl and independently to Farmaki. We prove that — over Computable Mathematics — this theorem is equivalent to closure under the ω Turing jump (i.e., under arithmetical truth). Natural combinatorial theorems at this level of complexity are rare. Our results give a complete characterization of the theorem from the point of view of Computable Mathematics and of the Proof Theory of Arithmetic. This nicely extends the current knowledge about the strength of Ramsey Theorem. We also show that analogous results hold for a related principle based on the Regressive Ramsey Theorem. In addition we give a further characterization in terms of truth predicates over Peano Arithmetic. We conjecture that analogous results hold for larger ordinals.
منابع مشابه
On the number of solutions of regular systems in sets with positive density in abelian groups
We prove a density version for the Ramsey statement that, for fixed r and sufficiently large n, every coloring of an abelian group of order n with r colors has nontrivial monochromatic solutions of the system Ax = 0, where A is an integer matrix with row–sum zero. Our result shows that asymptotically the number of solutions is in fact as large as it can be expected.
متن کاملGeneralized local colorings of graphs
Let k be a fixed positive integer and let H be a graph with at least k + 1 edges. A local (H, k)-coloring of a graph G is a coloring of the edges of G such that edges of no subgraph of G isomorphic to a subgraph of H are colored with more than k colors. In the paper we investigate properties of local (H, k)-colorings. We prove the Ramsey property for such colorings, establish conditions for the...
متن کاملOn Partitions of En
Euclidean Ramsey theory [i-3] is that branch of combinatorics which deals with questions of the following type: Which finite subsets C of lE” have the property that for any partition of Euclidean n-space lE” into r classes, say [En = C1 U *** v C, , some Ci always contains a subset C’ which is the image of C under some Euclidean motion? Such C are said to be r-Ramsey for [En. We usually use alt...
متن کاملZarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملStability of the path-path Ramsey number
Here we prove a stability version of a Ramsey-type Theorem for paths. Thus in any 2-coloring of the edges of the complete graph Kn we can either find a monochromatic path substantially longer than 2n/3, or the coloring is close to the extremal coloring.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 79 شماره
صفحات -
تاریخ انتشار 2014